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Abstract. The shape of a surface with constant mean curvature (CMC) has been studied in
mathematics and physics related to nonlinear integrable theory and harmonic map (σ -model)
theory. In the study a fictitious (linear) Dirac-type operator appears as a tool of the calculus
(Konopelchenko B G and Taimanov I A 1996 J. Phys. A: Math. Gen.29 1261–5).

In this paper, I confine the Dirac field defined inR3 to a thin surface embedded inR3 and
obtain a proper Dirac operator for the thin surface. Then it completely agrees with the Dirac-
type operator used in the calculus of the CMC surface theory. In other words, the mathematical
Dirac-type operator is realized by a physical Dirac particle.

1. Introduction

Symmetry (transformation group) is the most important subject in physics and mathematics,
as Klein declared in 1872 at Erlangen [1]. From category theory, it is well known that there
is a functor (correspondence) between the analytical and differential geometrical categories
if they come from the same symmetry [2]. For example, in the Atiyah–Singer index
theorem [3–5] the structure of the Dirac field defined on a fibre bundle and that of the
connection of the fibre bundle, i.e. the gauge field, exhibit the same symmetry and then
their homomorphism to an integer are identified; the topological excitation of the gauge
field and that of the Dirac field have a certain correspondence [6], as Heisenberg’s matrix
dynamics and Schrödinger’s differential equation represent the same quantum mechanics.
Due to the existence of such a functor, a bosonization (boson-fermion correspondence)
scheme sometimes appears in physics.

Recently, a constant mean curvature surface, realized physically in the case of an
equilibrium soap film dividing spaces with different pressure, has been studied [7–12];
the mean curvature consists of an extrinsic connection form (Weingarten map) [13, 14] and
is a feature of a submanifold or immersed object. In the calculus of such a surface, a
Dirac-type operator appears, and its properties exhibit the symmetry of the system [7, 8],
though its prototype was founded by Weierstrass and Enneper before the discovery of the
Dirac operator [7, 8, 13, 14]. The question arises as to why the Dirac operator appears in
the differential geometrical problem. The purpose of this paper is to answer the question in
terms of submanifold quantum mechanics.

The submanifold quantum mechanics I call upon was first discovered by Jensen and
Koppe in 1971 [15]. It was rediscovered by da Costa in 1982 [16]. They considered a
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quantum particle confined in a low-dimensional subspace inR3 and then found the canonical
Laplacian by constructing the Schrödinger equation in the subspace.

Following their formulation, I have been studying the canonical differential operators
defined properly in a ‘submanifold’ embedded or immersed inRn, e.g., the Schr̈odinger,
Klein–Gordon and Dirac operators [17–24]. They have potential terms in each equation
consisting of the extrinsic curvature of the system.

In a series of works [17–24], I showed that the Dirac operator in a space curve immersed
in Rn can be regarded as the Lax operator of the generalized modified Korteweg–de Vries
(MKdV) equation [20], while the extrinsic curvature of a space curve obeys such a soliton
equation. In other words, I found a physical (geometrical) realization of the correspondence
between the infinite linear equation as a fermionic (Grassmannian) space and the nonlinear
differential equation [23]. This correspondence is expected to be interpreted as a functor
between the fermionic (analytic) and bosonic (differential geometrical) categories. As there
had been no theory of the index theorem on the immersed space prior to [19, 22], I thus
proved that the Dirac operator in submanifold quantum mechanics is a canonical object and
its analytic index agrees with the topological index of the immersed space [19, 22]. In other
words, I discovered the index theorem related to the immersed object [19, 22].

Furthermore, following my formulation [17], Burgess and Jensen generalized the Dirac
operator in a space curve inR2 to that on a surface inR3 [25]. As do the Schr̈odinger
operator and Klein–Gordon operator, it also includes a potential term consisting of the mean
curvature.

After Polyakov pointed out that the extrinsic curvature is necessary for renormalizability
in two-dimensional gravity [26], a surface with an extrinsic curvature has also been studied
in elementary particle physics [27]. However, in classical theory the extrinsic curvature has
played central roles because a classical object has a finite thickness [28]. In the eighteenth
century, the shape of an elastica, an elastic rod with an infinitesimal thickness, was of
the greatest concern in mathematical physics [28]. Due to the thickness, its Lagrangian
is proportional to the square of the extrinsic curvature. Daniel Bernoulli investigated it
and discovered the Lagrangian and the action principle and Euler completely classified the
shape of a static elastica inR2. However, the dynamics of the elastica is still an open
problem and its extrinsic curvature gives fruitful information about nonlinear differential
equations [29–31]. Next, the shape of an equilibrium soap film under equal pressure was
one of the most important problems in nineteenth century, this being known as the minimal
surface problem or the Plateau problem [13, 14, 32]. The mean curvature of such a surface
vanishes due to the surface tension from the Laplace formula and the surface tension comes
from the existence of the thickness of the surface [32]. The constant mean curvature surface
is regarded as a natural generalization of the minimal surface [7–12]. Accordingly, it is
natural that in order to investigate the physical effect of the extrinsic curvature I assume an
object has a thickness.

In section 2 I will review the geometrical situation of the system. In section 3 I will
confine the Dirac field defined inR3 to an immersed thin surface following [25], and
properly obtain the Dirac operator there. After the surface is restricted to a conformal
flat one, in section 4 I will show that the Dirac operator defined in the immersed surface
completely agrees with the Dirac-type operator in [7, 8], which was introduced as a tool
to investigate the constant mean curvature surface. In other words, in this paper I will
investigate the effect of the thickness of the surface by dealing with the Dirac field confined
there, while the studies in differential geometry are performed by dealing with its geometrical
structure [7–12]. Then I will conclude that both are compatible. At the end of section 4 I
will discuss my results and give open issues related to this model.
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2. The geometry of a curved surface embedded inR3

Before I define the problem of a Dirac field constrained to lie on a curved surface embedded
in R3, I will set up the geometrical situation of the system. In this section, I will review
the geometry of a surfaceS embedded inR3 [12, 13, 18]. Since the imaginary time and
Euclidean quantum mechanics are very useful in the path integral method, I will deal with
only the Euclidean Dirac field in this paper. Furthermore, for the sake of simplicity, I
assume that such a surface is embedded inR3 rather than immersed temporarily.

As I will use a confinement potentialmconf to constrain the particle to be onS, it also
enables us to consider only the geometry in the vicinity ofS or a tubular neighbourhoodT of
the surfaceS even before I take a limit. Due to the properties of the tubular neighbourhood
T of the surfaceS and the affine structure ofR3, the geometry is reduced to a simple one.

Since I wish to express a metricGµν in the tubular neighbourhoodT in terms of the
variables ofS, I will define the general coordinates(q1, q2, q3), in terms of which the
curved surfaceS will be expressed after one of its degrees of freedom has been suppressed.
Let the middle parts of the Greek indices(qµ, qν, . . .) indicate the three-dimensional curved
system,µ = 1, 2, 3, and the first and second coordinates indicate the position attached toS.
The relation between the Cartesian(X1, X2, X3) and general coordinate systems is given
through the moving frame (Jacobian element):

EIµ := ∂µXI (2.1)

where∂µ := ∂/∂qµ. The inverse matrix ofEIµ is denoted byEµI . The metric is written as

Gµν := δIJEIµEJν. (2.2)

When a position onS is represented using the affine vectorx(q1, q2) in R3 and the
normal unit vector ofS is denoted bye3, I can uniquely express a pointX := (X1, X2, X3)

in the vicinity of S in terms of them:

X(qµ) = x(qα)+ q3e3. (2.3)

(I will deal with only a tubular neighbourhoodT in which I can uniquely determine a
coordinate system such as (2.3).) The beginning parts of Greek indices(qα, qβ, . . .) span
from one to two. I define the moving frame alongS as

eIα := ∂αxI (2.4)

and its inverse matrix aseαI . I divide the ordinary derivative alongS into the horizontal
and vertical part; the horizontal part is written by∇α defined as

∇αb := ∂αb− 〈∂αb, e3〉e3 (2.5)

for a vector fieldb. Here 〈 , 〉 denotes the canonical inner product in the Euclidean space
R3. The two-dimensional Christoffel symbolγ γβα attached toS is thus defined as

∇αeβ = γ γβαeγ . (2.6)

The second fundamental form is denoted as

γ 3
βα := 〈e3, ∂αeβ〉. (2.7)

On the other hand, from the relation〈e3, ∂αe3〉 = 0, the Weingarten map,−γ αβ3eα, is
defined by

γ αβ3eα := ∇βe3 γ αβ3 = 〈eα, ∂βe3〉. (2.8)
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Because of∂α〈eγ , e3〉 = 0, γ αβ3 is associated with the second fundamental form through
the relation

γ 3
βα = −γ γ3αgγβ (2.9)

wheregαβ := δIJ e
I
αe
J
β is the surface metric. It should be noted that for the dilation of

(q1, q2)→ λ(q1, q2), the Weingarten map does not change.
I can therefore expressEIµ (= ∂xI /∂qµ) in the tubular neighbourhoodT in terms of

eIα:

EIα = eIα + q3γ
β

3αe
I
β . (2.10)

The metric in the tubular neighbourhoodT (2.2) is explicitly expressed as

Gαβ = gαβ + [γ γ3αgγβ + gαγ γ γ3β ]q3+ [γ γ3αgγ δγ
δ
3β ](q3)2

G3α = Gα3 = 0

G33 = 1

(2.11)

andG := det(Gµν) becomes

G = gζ ζ 1/2 := (1+ tr2 (γ
α
3β)q

3+ det2 (γ
α
3β)(q

3)2) (2.12)

whereg := det2 (gµν). Here tr2 and det2 are the two-dimensional trace and determinant
over α andβ, respectively. These values are invariant for the coordinate transformation if
I fix the surfaceS and they are known as the mean and the Gaussian curvatures onS:

H := − 1
2 tr2 (γ

α
3β) K := det2 (γ

α
3β). (2.13)

Accordingly the Christoffel symbols associated with the coordinate system of the tubular
neighbourhoodT are given as

0µνρ := 1
2G

µτ (Gντ,ρ +Gρ,τ,ν −Gνρ,τ ) (2.14)

and in terms of them the covariant derivative∇µ in T is naturally defined as

∇µBν := ∂µBν − 0λµνBλ (2.15)

for a covariant vectorBµ.

3. The Dirac operator on a curved surface embedded inR3

As I have finished the geometrical preliminaries, in this section I will consider the Dirac
field Ψ =: (Ψ1,Ψ2)T defined in the tubular neighbourhoodT and confine it toS by taking
a limit [25].

I will start with the original Lagrangian given by

Ld3x = Ψ(x)i
(
0I∂I −mconf(q

3)
)
Ψ(x) d3x (3.1)

where0I is the gamma matrix in the three-dimensional Euclidean spaceR3, ∂I := ∂/∂xI
andΨ = Ψ†01. Let us assume thatmconf has the form

mconf(q
3) :=

√
µ2

0+ ω2(q3)2

for a largeω andµ0 with µ0 � √ω [24]. Since the confinement potential depends only
upon the normal direction with an induced metric from that ofR3, I can recognize that
the thin surface has the same thickness all over the surfaceS. Due to the confinement
potential, I need not pay any attention at all to singularities of the curved coordinate system



A constant mean curvature surface and the Dirac operator 4023

qµ like the origin of the spherical coordinate. Precisely speaking, since 1/
√
ω is a unit of

the thickness of the potential, we assume the situation,µ0� √ω and
√
ω � maxS,α,β γ α3β .

I note that this potentialmconf is not coupled with00 and I can avoid the disease of the
Klein paradox on the confinement [17, 19]. Furthermore, since the mass potentialmconf is
an even function ofq3, there is no non-trivial zero mode along the normal direction and
in the process of the confinement the chirality of the Dirac field is preserved [24, 33, 34].
Thus the normal component of the Dirac field is factorized. Each energy level of the normal
component splits and can be regarded as effective mass indexed by a non-negative integer.
The Lagrangian can then be expressed by the sum of ones corresponding to each level. The
ground state of the normal direction exists as a mode of the lowest level and is localized
in the region(−1/

√
ω, 1/
√
ω) for the normal direction. By paying attention only to the

ground state, the Dirac particle is approximately confined to the thin tubular neighbourhood
T0 ≈ (−1/

√
ω, 1/
√
ω) × S. After taking the squeezed limit, I can realize the quasi-two-

dimensional subspace inR3 and, by integrating the Dirac field along the normal direction,
express the system using the two-dimensional parameters(q1, q2). Then I will interpret the
subspace as the surfaceS itself [17–25].

Thus I express the Lagrangian in terms of the curved coordinate system introduced in
the previous section. For the coordinate transformation (2.1), the Dirac operator [19, 24, 35]
becomes

i0I∂I = i0µ∂µ (3.2)

and the spinor representation of the coordinate transformation is given as

Ψ(q) = e−6
IJ�IJ Ψ(x) (3.3)

where6IJ is the spin matrix

6IJ := 1
2[0I , 0J ] (3.4)

and6IJ�IJ is a solution of the differential equation

∂µ
(
6IJ�IJ

) = �µ �µ := 1
26

IJE ν
I (∇µEJν). (3.5)

Hence the Lagrangian density (3.1) can be expressed in terms of the general coordinate

L d3x = Ψ(q)i
(
0µDµ −mconf(q

3)
)
Ψ(q)

√
G d3q (3.6)

where0µ := 0IE µ

I andDµ denotes the spin connection

Dµ := (∂µ +�µ). (3.7)

After straightforward calculation, the spin connections [25] become

Dα = ∂α +�α D3 = ∂3. (3.8)

I will follow the argument of da Costa [16–24, 36]. Since the measure on the curved
system is given as

d3x =
√
G · d3q (3.9)

and−i∂3 is neither Hermitian nor a momentum operator [36], I redefine the field as

9 = ζ 1/2Ψ. (3.10)

Then the Lagrangian density (3.6) changes as

L d3x = 9(q)i(0µDµ −mconf(q
3))9(q)

√
g d3q (3.11)
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where

Dα := Dα − 1

4
∂α logζ D3 := ∂3+ H −Gq3

1− 2Hq3+G(q3)2
. (3.12)

In the deformed Hilbert space spanned by9, −i∂3 is the momentum operator and represents
the translation along the normal direction.

Due to the confinement potentialmconf, the Dirac field for the normal direction is
factorized and can be expressed by the modes classified by a non-negative integern [19, 24].
Then there exists a mode(n = 0) with the lowest energy for the normal direction such that

9(q1, q2, q3) ∼
√
δ(q3)ψ(q1, q2) (3.13)

and

(03∂3−mconf(q
3))
√
δ(q3)ψ(q1, q2) = m0

√
δ(q3)ψ(q1, q2). (3.14)

The Lagrangian density is decomposed to those classified by the moden [19, 24]. Hence
it can be regarded that each mode is an independent field. By restricting the function space
of the Dirac field to that withn = 0 mode, the Lagrangian density on a surfaceS is defined
as

L(0)S
√
g d2q :=

(∫
dq3 L

√
G

)∣∣∣∣
n=0

d2q (3.15)

and then it has the form [25]

L(0)S
√
g d2q = iψ(γ 1D1+ γ 2D2+Hγ 3+m0)ψ

√
g d2q (3.16)

where I rewrite the quantities as

eIα ≡ EIα|q3=0 γ µ(q1, q2) := 0µ(q1, q2, q3 ≡ 0)

ωα(q
1, q2) := �α(q1, q2, q3 ≡ 0) Dα := ∂α + ωα.

(3.17)

Since a confined space is expressed by the two-dimensional parameter(q1, q2) and can
be regarded as a two-dimensional space, I can identify the confined space with the surface
S itself and then equation (3.16) is interpreted as a Dirac operator in a surfaceS embedded
in R3. Hence the inner space can be written as

ωα := 1
26

ij e
β

i (∇αejβ) (3.18)

where the indices ofi, j run from 1 to 2.
It should be noted that this Dirac operator is not Hermitian in general, since neither is

that in a space curve immersed inR3 [15–26]. It is natural because the extra term appearing
as an immersed effect in the Schrödinger equation behaves as the negative potential if one
confines a Schrödinger particle in a lower dimensional object [15–25]; roughly speaking the
square root of the negative potential appears as a pure imaginary extra field in the Dirac
equation [17–25].

Next I will mention the immersion of the surface. If there is a crossing in a surface, the
crossing can be moved in another direction by embeddingS in a higher-dimensional space,
e.g.,R4, as long as it does have a negligible effect on the curvature. Imagine that a thin
rope is on a table (two-dimensional space) with a crossing. To be exact such a crossing
is not a mathematical crossing because of the thickness of the rope in three-dimensional
space, even though its shape can be parameterized by two-dimensional space. Similarly,
I can extend the set of the surface{S}, which has been embedded inR3, to ones roughly
immersed inR3 and precisely embedded inR4 without mathematical crossing. Then such
an operation will not affect the above computations at all if the thickness of the surface is
appropriate. Thus I can extend the Lagrangian density (3.16) to that of a surface immersed
in R3.
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4. The Dirac operator on a complex surface immersed inR3

In generalm0 does not vanish, but since I am interested in the properties of the Dirac
operator itself, I will neglect the massm0 hereafter; I will investigate the high energy
behaviour of the field withm0, i.e. the behaviour of the high energy of the surface direction
and the lowest energy of the normal direction using the independence of the normal modes.

In this section, I will consider only a surface with the conformal flat metric [26,
pages 228–35] immersed inR3:

gαβdqαdqβ = ρδα,βdqαdqβ. (4.1)

This condition looks very strong but is very natural. Surfaces appearing in physics
are sometimes complex analytic and are conformal flat. Then the Christoffel symbol is
calculated as

γ αβγ = 1
2ρ
−1(δαβ∂γ ρ + δαγ ∂βρ − δβγ ∂αρ). (4.2)

We have a natural Euclidean inner space denoted by the parametersya, yb, . . ., (a, b = 1, 2).
Then the moving frame is written as

eaα = ρ1/2δaα (4.3)

and the gamma matrix is connected to the flat oneσa:

γ α = e α
a σ

a. (4.4)

Thus the spin connection becomes

ωα = − 1
4ρ
−1σab(∂aρδαb − ∂bρδαa) (4.5)

whereσab := 1
2[σa, σ b]. The Dirac operator can be expressed as

γ αDα = σaδαa
[
ρ−1/2∂α + 1

2ρ
−3/2(∂αρ)

]
. (4.6)

Similarly to (3.10), I will redefine the Dirac field in the surfaceS as

ψ := ρ1/2ψ (4.7)

and then the Dirac operator (4.6) becomes simpler [26]:

γ αDαψ = ρ−1σaδαa∂αψ. (4.8)

Noting that the metric of the directionq3 is unit,G33 = 1 and nowq3-direction is inner
space,γ α=3 should be regarded as

γ α=3 ≡ σa=3 (4.9)

whereσ 3 := −iσ 1σ 2. Sinceψγ 1ψ
√
g d2q is the charge density, I expect the relation

ψ = ψ†γ1 = ψ†σ 1ρ1/2. (4.10)

Then the Lagrangian density (3.16) is reduced to

L(0)S
√
g d2q = iψρ−1/2(σ aδαa∂α + ρ1/2Hσ 3)ψ d2q. (4.11)

If the complex parameterization of the surface [7, 8]

z := q1+ iq2 (4.12)

is employed, and

∂ := 1
2(∂q1 − i∂q2) ∂ := 1

2(∂q1 + i∂q2) (4.13)
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the Lagrangian density (4.11) is explicitly expressed as

L(0)S
√
g d2q = (ψ∗+∂ψ+ + ψ∗−∂ψ− − 1

2ρ
1/2H(ψ∗+ψ− − ψ∗−ψ+)

)
d2z (4.14)

whereψ∗± is not the complex conjugate ofψ± and 2i d2q ≡ dz ∧ dz =: d2z.
Hence the equation of motion of the Dirac field in the complex surfaceS immersed in

R3 is derived as

∂ψ+ = p(z, z)ψ− ∂ψ− = −p(z, z)ψ+ (4.15)

∂ψ∗+ = p(z, z)ψ∗− ∂ψ∗− = −p(z, z)ψ∗+ (4.16)

where the ‘external’ fieldp is defined as

p := 1
2ρ

1/2H. (4.17)

From (4.15) and (4.16), under the on-shell condition, the identity(
ψ∗+
ψ∗−

)
=
(

0 1

−1 0

)(
ψ+
ψ−

)
(4.18)

holds, whereψ± is the complex conjugate ofψ±. Then it is very surprising that equations
(4.15) are completely identified with equation (1) of Konopelchenko and Taimanov [7, 8],
introduced as tools for a calculus of the immersed complex surface inR3. In other words,
the Dirac operator introduced by Konopelchenko in [7] can be interpreted as that in the
surface given through the procedure of submanifold quantum mechanics.

In a special situation, I can allow that they’s andx’s are identified as

x1 ≡ y1 x2 ≡ y2 (4.19)

but in the general case their relation cannot be easily described. However, the
extrinsic geometry can be expressed by the Dirac field itself. When I use the complex
parameterization of the part of the Euclidean space

Z := x1+ ix2 (4.20)

we have the special solutions of (4.15)

2i(ψ+)2 := −∂ Z 2i(ψ−)2 := ∂Z − 2ψ+ψ− = ∂x3 (4.21)

which were derived in [7]. Precisely speaking, equations (4.21) are compatible with (4.15)–
(4.18), but should be interpreted as formulae which exhibit the connection between the
Dirac fields and the geometry. Thus these may be regarded as a new bosonization of
the fermionic field [23, 26, 29, 30], since I obtained a similar formulation for the elastica
problem by complexifying its arclength [29]. In the elastica problem, the square root of
the normal and tangential vector can be regarded as the Dirac field with a half-spin and is
related to the vertex operator in soliton physics [29]. As Konopelchenko mentioned [7],
the correspondence (4.21) comes from the Frenet–Serret relation or Weierstrass–Enneper
relation. As modern representations of the Frenet–Serret relation related to soliton theory
were given by Goldstein and Petrich [37], I found that they are, also, closely related to
elementary particle physics and algebraic geometry [29, 30].

Thus if one solves (4.15) under a certain condition, one also finds the shape of the
surface. In other words, the analytical properties of the Dirac field determine the geometry
of the system.

The dilation factor is obtained by straightforward computation [7] as

ρ1/2 = 2(ψ∗+ψ− − ψ∗−ψ+) = 2(ψ+ψ+ + ψ−ψ−) (4.22)
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and the Gauss curvature is calculated as

K = −2
∂∂ log(ρ)

ρ
. (4.23)

The Euler number can be calculated by the formula [7]

χ = 1

2π

∫
Kρ dz ∧ dz = − 1

2π

∫
∂ρ−1/2∂[2(ψ∗+ψ− − ψ∗−ψ+)] dz ∧ dz. (4.24)

This might be related to the index theorem [2–6, 20, 22].
For the constant mean curvature surface, (H = constant), the Dirac field is coupled

with the dilaton [26],φ := logρ:

L(0)S
√
g d2q = (ψ∗+∂ψ+ + ψ∗−∂ψ− − 1

2eφ/2H(ψ∗+ψ− − ψ∗−ψ+)
)

d2z. (4.25)

This dilaton is governed by the sinh-Gordon equation [9], which is related to the Liouville
equation. As Konopelchenko did, by dealing with (4.25) I can investigate the symmetrical
properties of the surface. Just as with an ordinary Dirac field, it has a momentum current and
a Hamiltonian. These are identified with those derived by Konopelchenko and Taimanov
in [8].

WhenH = 0, the equation of motion (4.15) becomes the Weierstrass–Enneper formula
[7, 8, 13, 14], which was obtained as a scheme for getting a minimal surface in the last
century, and the Lagrangian (4.25) becomes that in ordinary (classical) conformal field
theory. Since Weierstrass and Enneper proved that there is a one-to-one correspondence
between the minimal surface and the conformal function, it can also be interpreted as a kind
of fermion–boson correspondence in this theoretical framework.

As I showed the correspondence between the analytical system of the Dirac field and
the geometrical system of the base spaceS, I will comment on possibilities of this theory.

Since the surface is now a conformal flat one from (4.1) and the mean curvature does
not directly have any effect upon the intrinsic properties of the surface, we may regard
(4.14) as a natural generalization of that of conformal field theory. Even with the same
mean curvature, e.g.,H = 1, various surfaces are found [7–12]. In other words, I could
classify conformal surfaces by their extrinsic properties.

Furthermore, the Dirac operator(−ρ1/2H/2 ∂

∂ ρ1/2H/2

)
(4.26)

can be regarded as a generalization of that in a thin rod inR2 which is identified with the
Lax operator of the MKdV equation [17, 19]. Since I obtained the Dirac operator associated
with the generalized MKdV equation by confining a Dirac operator to a rod inRn [20],
I could generalize the Dirac operator (4.26) to that on a surface inRn n > 3. Since the
generalized MKdV theory is closely related to the W-algebra, the Dirac operator of a surface
in Rn might be expressed in the framework of the Gervais and Matsuo formulation on the
W-algebra [27].

In soliton theory, the momentum space of the Dirac operator can be expressed by the
compact Riemannian surface with general genus. It was shown that the constant mean
curvature surface can also be realized as a compact Riemannian surface [10–12]. Hence
there is a kind of duality between the configuration space and the momentum space because
both are described algebraically. The Dirac operator (4.26) may exhibit such duality. Thus
I expect further study on the duality.

Next I will mention the dynamics of the surfaceS. The Dirac operator (4.26) is
applicable to a more general mean curvatureH . Thus I can consider a deformation of the
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surfaceS preserving the whole spectrum of the Dirac operator (4.26). Such a deformation
can be expressed by a partial differential equation ofqα and the deformation parameter.
Then such a differential equation is expected to be regarded as a(2+1)-dimensional soliton
equation as pointed out by Konopelchenko [38]. I believe that the dynamics of the surface
is a very good toy for the physicist to use in finding the higher-dimensional soliton equation,
as Euler found various solutions of the sine-Gordon equation by observing an elastica long
before the discovery of the Korteweg–de Vries equation [28].

Finally, I will comment on another possibility. As I described in the introduction,
thickness is the most important factor in the extrinsic curvature theory. Hence the Polyakov
program for the two-dimensional gravity may be archived by assuming a thickness of the
string or the two-dimensional universe. Such an assumption might open other theoretical
possibilities in particle and universe physics [21]. Then studies of the deformation of the
surface are again required, since if one quantizes the surface, one must then deal with the
above deformation using Schwinger’s proper time as a deformation parameter.
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